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ABSTRACT 

In military operations, the readiness of land platforms is critical as their availability affects the operational 
readiness of any armed forces. Existing vehicle maintenance regime involves regular preventive 
maintenance to upkeep the vehicle, and corrective maintenance to replace defective components. This 
project employs advanced data analysis and machine learning to predict potential failures and propose just 
in time predictive maintenance strategies, aiming to enhance system availability through minimising time 
taken for regular maintenance regimes and reduce costs to replace defective components. Initial analysis 
indicated that variables such as Mileage, Engine Hours, and Age were key factors contributing to frequent 
breakdowns. Using QlikSense software for data filtering and Exploratory Data Analysis (EDA) for feature 
engineering, various models were trained, with the Random Forest model achieving the highest accuracy 
in predicting failures. Results show that it is potentially possible to use this predictive approach to pre-
emptively detect failures for just in time repairs. 
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INTRODUCTION 
In the modern defence landscape, land platforms play a vital role in operational 

effectiveness, making their reliability and readiness crucial for mission success. However, the 
maintenance of these platforms—especially legacy systems—is challenging. Unpredictable nature 
of equipment failures not only disrupt operational availability but also contribute to rising 
maintenance costs. Current strategies of regular preventive maintenance could reduce the 
likelihood of breakdowns, at a cost of regular platform downtime and manpower cost.  This 
underscores the need for innovative approaches to optimise maintenance processes.  

 
As the saying goes, “A stitch in time saves nine”. Addressing issues early prevents them 

from becoming larger problems. This concept is also known as ‘Predictive Maintenance’.  Unlike 
"corrective maintenance"1 or “preventive maintenance”, predictive maintenance forecasts when 
equipment is likely to break by using sensors, data processing, and sophisticated monitoring 
techniques, and these equipment could be repaired before further damages. To forecast probable 
future failures, this project aims to use advanced data analysis techniques on past telemetry data 
from ground platforms. This will potentially lower maintenance costs, increase platform 
availability, and improve planning of spare parts support. 

 
This project studies the failures of the brake chamber of a selected platform that are causing 

operational disruptions and safety issues. These failures occur when the residual pressure of the 
brake is beyond an observed threshold of ≥ 0.05 bar. By analysing the platform’s performance data 
and applying machine learning, we can identify the root causes and develop a predictive 
maintenance strategy to prevent future failures and enhance system reliability.  

 
For this study, 129 records were given in total with distinct variables for each record. As 

there were many variables involved, this research also seeks to optimise the data analysis 
techniques used to better extract valuable features and conclusions from the dataset.  

LITERATURE REVIEW 
 
 In a rapidly evolving world, there are many industries where machinery and equipment 
play a crucial role in operations. At many points in time, failures and breakdowns in the equipment 
occur, and substantial time costs were involved to conduct corrective maintenance. For Small and 
Medium Enterprises (SMEs), the cost of maintaining equipment can be the key factor that 
determines whether they make a profit or incur a loss. In the military context, the availability of a 
military platform is of utmost importance and such maintenance methods impact their operations 
and training effectiveness. Today, maintenance is recognised as a valuable contributor, playing a 
crucial role in driving performance enhancement. As such, maintenance should no longer be seen 
merely as a narrow operational and technical expense, but rather as a strategic long-term 
investment that considers the organisation's objectives and anticipated technological changes 
[1][2]. 
 
 That is where Predictive Maintenance comes into play. Predictive maintenance leverages 
data analysis to detect operational issues and possible equipment faults, allowing for proactive 
                                                
1 Maintenance activities done to repair or restore equipment that has already broken down or malfunctioned. 



repairs before failures happen [3]. The emergence of Industry 4.0, along with unlimited data 
storage, computing power, and advanced analytics, has made it possible to predict equipment 
failures, lower maintenance costs, and extend asset lifespan [4]. As such, predictive maintenance 
has really become an essential part of many companies.  
 
  A key area of research focuses on creating predictive maintenance models using advanced 
analytics techniques, such as machine learning, to forecast potential failures [5]. Research by Sezer 
et al. (2018), talks about low-cost Industry 4.0 architecture for predictive maintenance in small 
manufacturing enterprises, using machine learning to predict part rejection based on temperature 
and vibration data from a CNC turning centre. Research by Olaf Peter Schleichert et al. (2017) 
suggests that predictive maintenance using advanced analytics can increase equipment uptime by 
up to 20% in Industry 4.0. Lastly, research by Issam Mallouk et al. (2021) proposes a machine 
learning approach to predict the remaining useful mileage of truck tires using a supervised learning 
algorithm, Random Forest, which can help transportation companies reduce downtime and costs. 
 
 In a nutshell, equipment failures can be costly and disruptive. Predictive maintenance, 
enabled by advanced analytics, can help prevent failures, reduce costs, and improve equipment 
uptime. 

METHODOLOGY 

Main Parameters 
This project focusses on five main parameters from the 129 records which affects the 

failure rate. They are “Variant” of the vehicle, “Phase” (of production)2 and “Age till Failure”, 
“Mileage”, and “Engine hours”. In the data, “Phase” and “Variant” are ‘Discrete Dimensions’, or 
Qualitative, categorical discrete data. “Age till failure” is ‘Discrete Measures’, or Quantitative, 
numerical discrete data. “Mileage” and “Engine hours” are ‘Continuous Measures’, or 
Quantitative, numerical continuous data. 
 
 At first, variant was thought to be an important parameter to differentiate between 
breakdown rates as different variants (of the same platform) have slight modifications to cater to 
their functions. These modifications might lead to differences in the number of breakdowns and 
failures per variant. Phase was also thought to be important as different phases have different 
processes occurring. For example, between phase 1 and 2, production was done overseas in phase 
1 and production was done locally in phase 2 even though spares were sourced overseas in both 
phases. This might lead to change in quality or even methods of assembly of the vehicle during 
production phases and cause variable failure rates.  
 

 Mileage, Engine hours and Age till Failure was then evaluated as parameters in 
determining breakdown as these variables indicate the usage of the Land platform vehicle, hence, 
the higher the usage, the higher the chance of a failure. 

                                                
2There are three phases. In Phase 1, spares and production were done overseas. In Phase 2, spares were sourced 
overseas, and production was done locally. In Phase 3, both spares and production were done locally. 



For the analysis in this project, preliminary data analysis will be done using QlikSense3 to 
get various trends on basic variables. Then, Exploratory Data Analytics will be used to create the 
models. 

Data Visualisation using QlikSense: 
In Fig 1.1, Variant MN has the most records at 21 records, but Variants C and SV have the 

least records at two records each, which shows inequality and fluctuations in the count of records 
per variant. Therefore, using separate models to train individual variants can be ruled out. 

 

 
Fig 1.1: Total number of records by variant. 

 
 

 
Fig 1.2: The Percentages of Passes and Failures in total 

 
Among the records, there were a total of 107 passes and 22 failures (failure of brake 

chamber), translating it to 82.9% passes (see Fig 1.2). Therefore, from this, the baseline is to 
achieve an accuracy of 82.9% and an ideal final accuracy is an accuracy ≥ 90%. 

 
Phase vs Percentage of Failures 

Phase Total Records Failures Percentage of Failures 

1 36 6 16.67% (to 2 d.p.) 

2 31 12 38.71% (to 2 d.p.) 

3 62 4 6.45% (to 2 d.p.) 

Totals 129 22 17.05 % (to 2 d.p.) 
 

Table 1: Phase vs Percentage of Failures 
                                                
3 Qlik Sense is a user-friendly business intelligence and data analytics tool that enables real-time data exploration, 
visualisation, and interactive reporting. 



Since each phase has a different number of records, the percentage function was used to 
generate insights. Based on this, there were the most percentage of failures at phase 2 (spares were 
sourced overseas & production was done locally) at 38.71%. Fig 1.5 (in the Appendix) has also 
shown this, where phase 2 had the most count of failures at 12 failures. From the table, Phase has 
enough records for every individual Phase and thus, training individual models per phase is a 
potential approach to consider. 

 
Looking at the number of failures and failed variants for each variable (mileage, engine 

hours, phase and age), Figures 1.3 to 1.9 (in the Appendix)were generated. From all the figures, 
Phase (Fig 1.5) and Age till Failure (Fig 1.6 and 1.7) had the most correlation. In Fig 1.5, as stated 
above, it appears that individual phases have enough data and Phase 2 shows a significantly higher 
failure rate than Phases 1 and 3. In Fig 1.7, it was found that Age matters as well as 4 years till 
failure had the highest failure rate at 13 failures compared to other ages. Variant also affects age 
till failure, but this trend cannot be fully concluded as there were different numbers of records for 
each variant due to the divide. However, mean age till failure remains at 3.68 years (to 2 d.p.). 

 
As such, the data visualisation section can be concluded. 
 
Main Insights generated: 

(1) Variant somewhat impacts failure, although not yet clearly possible to tell as each variant 
has a different number of datapoints. Hence, although it is important, a separate model for 
every variant cannot really be used.  

(2) There is a correlation between age and failure. 4 years after manufacturing, there were the 
greatest number of failures at 13 failures. Thus, using separate models for each Age till 
failure group is somewhat a possible method for consideration. 

(3) Phase 2 is strongly correlated with failures as it had the most percentage of failures, 
38.71%. Therefore, training separate models for each Phase is a potential approach that 
could be taken. 

(4) Mileage and Engine hours, contrary to intuition, show no significant correspondence 
between both each other and failure rates. 

MODEL SELECTION AND TRAINING 
 
Four models were chosen based on their suitability for the data set given:  
 
Decision tree model  

Decision tree was chosen as it is a type of supervised learning algorithm in machine 
learning, applicable to both classification and regression tasks. This model works by recursively 
splitting the data into subsets based on input feature values, creating a tree structure [8].  

   

Gradient Boosting 
Gradient Boosting is a widely used machine learning boosting algorithm designed for both 

classification and regression problems. It is also commonly employed for structured data and 
predictive tasks. As a type of ensemble learning method, boosting builds models sequentially, with 
each subsequent model aiming to address the errors made by its predecessor. It integrates multiple 
weak learners to create a single, strong predictive model [9]. 



 
 

k-Nearest Neighbours  
The k-nearest neighbours (KNN) algorithm is a supervised, non-parametric classifier that 

makes predictions or classifications based on the proximity of data points. It is widely used in 
machine learning for classification and regression tasks and anomaly detection due to its simplicity  
and effectiveness [10]. 

 
 

Random Forest  
 Random forest is a widely used machine learning algorithm that aggregates the results of 
several decision trees to produce a final outcome. Its popularity has grown due to its simplicity 
and versatility, as it can effectively solve both classification and regression tasks, as well as feature 
selection tasks (for feature engineering) [11]. 
 

PERFORMANCE OF MODELS 

Feature Engineering 

 
Fig 2.1: Feature Engineering [12] 

 
 Feature engineering, in an essence, is the process of taking raw data and turning it into 
something that machine learning models can understand. The quality of the features used to train 
machine learning models is critical to their success. Feature engineering is a set of techniques that 
allows us to create new features by combining or transforming existing ones. These techniques 
help to highlight the most important patterns and relationships in the data, which in turn helps the 
machine learning model to learn from the data more effectively. 
 
 Before doing feature engineering, due to lesser domain knowledge, data was mostly 
classified normally like using sum, mean and count. Examples during the thought process included 
adding Age, Mileage and Engine hours as part of the main features as they suggest wear-and-tear, 
which leads to higher probability of brake chamber failure. After gaining adequate domain 
knowledge, more complex features were included, which will be elaborated on in the following 
paragraphs. 
 
 In this case, the feature engineering done in this paper included Mileage per Engine Hour, 
total residual pressure, Pressure and age, Pressure Age Mileage, Pressure Age Mileage Engine and 
Pressure age Mileage hours (Their formulas could be found in the Appendix). Mileage per Engine 
Hour feature measures the system's efficiency by calculating the distance covered per unit of 
engine runtime, emphasising its operational performance. By normalising mileage using engine 
hours, it ensures consistency across vehicles, allowing for more accurate comparisons regardless 



of differences in scale. However, this might be a little inaccurate because Engine Hours also counts 
idling time4, which does not add to any distance in mileage. When the vehicle is not moving, there 
is nothing much applied on the wheels itself, so no wear and tear is expected. Pressure Age 
Mileage on the other hand, combines the Total Residual Pressure, Age till Date, and Mileage to 
represent multiple stress factors affecting system performance. It captures the interaction between 
age, usage (Mileage), and pressure, highlighting how these elements collectively impact the 
likelihood of failure. The feature Pressure Age Mileage Hour combines Total Residual Pressure, 
Age till Date, and Mileage per Engine Hour to highlight the interplay of system stress, aging, and 
operational efficiency. By focusing on efficiency alongside cumulative wear factors, it effectively 
identifies patterns linked to potential failures, aiding in more accurate predictions. 
 
 After choosing these features, the data was loaded for all four chosen models to see which 
features the models think are important, generating. Figures 2.2 to 2.5 (in Appendix). Based on the 
graphs, the following results were observed: In the Decision Tree Model, Total Residual Pressure, 
Pressure Age Mileage and Age till Date were rated the top three most important features. In the 
Gradient Boosting Model, Total Residual Pressure, Engine Hours and Age till Date were rated 
the top three most important features. In the k-nearest neighbours model, Total Residual Pressure, 
Pressure and Age, and Pressure Age Mileage Hour were rated the top three most important 
features. In the Random Forest Model, Total Residual Pressure, Pressure and Age, and Pressure 
Age Mileage Engine were rated the top three features respectively. From this data, the following 
can be implied: 
 

(1) All models found Total Residual Pressure as their most important factor. 
(2) In Decision Tree, Gradient Boosting and k-nearest neighbours, Age till Date was within 

top 3 of importance.  
(3) In all Models, Pressure and Age, as well as other variations with other variables (including 

Pressure Age Mileage, Pressure Age Mileage Hour, et cetera) have been within top 3 of 
importance. 

Prediction Models: 
Based on the results of the feature analysis, some code was generated for the prediction 

model. Through that, the accuracy of the models are as shown in Table 2 and the confusion matrix 
in 3. 
 

Model Accuracy / % (to 5 s.f.) Reproducibility / % 

Decision Tree 97.436 100 

Gradient Boosting 92.308 100 

k-nearest neighbours 84.615 100 

Random Forest 100.00 100 
Table 2: Model vs Accuracy 

                                                
4 Idling occurs when the Engine is turned on but the vehicle is not moving. 



Decision Tree Model: Firstly, the Decision Tree model had an accuracy of 97.436%. The 
Decision Tree performed very well, achieving near-perfect accuracy. Its simple, interpretable 
structure likely captured important patterns in the data effectively. However, close to perfect 
accuracy could lead to high risks of overfitting in the decision tree model compared to ensemble 
methods. A model is said to be overfit when it matches the training data too closely and is unable 
to generalise to new, unknown data [13]. 

 
Gradient Boosting Model: The Gradient Boosting model had an accuracy of 92.308%. 

By integrating weak learners (shallow decision trees), gradient boosting demonstrated its capacity 
to iteratively improve predictions with a high accuracy. Although its accuracy is lower than 
Random Forest and Decision Tree, Gradient Boosting often generalises well, especially on more 
complex datasets. It may require further tuning of hyperparameters to improve performance [14].  

 
k-Nearest Neighbours Model: With an accuracy of just 84.615%, the k-Nearest 

Neighbours (k-NN) algorithm performed the worst among all the models. This is mainly because 
k-NN relies on distance-based calculations to identify the closest neighbours, and features with 
larger numerical ranges can dominate the distance measurement. As a result, predictions become 
inaccurate since some features contribute more than others, even if they aren't more important. 
This issue becomes more prominent when working with many features, a problem known as the 
"curse of dimensionality" [15]. As stated in the previous parts, an accuracy of ≥ 90% was ideal. 
Nevertheless, to fix this, scaling the features using techniques like normalisation or standardisation 
ensures that each feature contributes fairly to the distance calculations [16]. 

 
Random Forest Model: The Random Forest achieved a perfect accuracy of 100.00%, 

showcasing its ability to handle the given dataset exceptionally well. This high performance can 
be attributed to its ensemble nature, where multiple decision trees are combined to reduce variance 
and overfitting, thereby improving generalisation. However, a perfect accuracy score raises 
concerns about potential overfitting, where the model memorises the training data instead of 
learning general patterns. Overfitting limits the model's ability to perform accurately on new, 
unseen data. To verify its robustness, additional techniques like cross-validation or testing on an 
independent dataset are essential to ensure that the Random Forest's performance is not just a result 
of overfitting but reflects true predictive power [17].  

 
The reproducibility of the models also matters as it ensures that the results of a model can 

be consistently replicated under the same conditions. For this model to have a high reproducibility, 
a random seed of 42 was set. This reproduces training results when splitting datasets equally in 
each time, causing the same event to be repeated exactly [18]. Reproducibility builds trust in the 
model's results, as it shows that the findings are not due to random chance or specific conditions 
and allows data scientists to debug and improve models by understanding how changes in data, 
parameters, or algorithms affect outcomes [19]. The results show that all models have 100% 
reproducibility, which might suggest that the model might be overfitted to the training data, 
capturing noise and specific patterns that do not generalise well to new, unseen data. Moreover, 
since the number of records (or sample size) is smaller in this dataset, the model might perform 
better on it, and its performance might not be ideal on larger, more diverse dataset, impacting its 
effectiveness in real-world applications. For future experiments, training data can be increased so 
that there is a more generalised model [20]. 



Model True Positives True Negatives False Positives False Negatives 

Decision Tree 33 5 0 1 

Gradient Boosting 31 5 0 3 

k-nearest neighbours 32 1 4 2 

Random Forest 34 5 0 0 

Mean 32.5 4 1 1.5 

 
Table 3: Confusion Matrix5 

 
 Based on the data models’ performance in Table 2, a confusion matrix was produced as 
seen in Table 3. From the table, it is seen that there are no False positives (the model predicted it 
as a pass but actually it is a failure) for all models except for k-Nearest Neighbours. This could 
have been due to the variance in magnitude of the data, which leads to inaccurate measure of 
distance and potentially false predictions. Nonetheless, since a large majority of the classifications 
are true positives and true negatives, it suggested that there is high accuracy in determining when 
repairs are necessary, so that platforms are only sent for repair when required and are not 
unnecessarily dispatched when repairs are not needed. However, there are a few false negatives 
for each model, which could degrade predictive model performance, leading to incorrect 
conclusions and flawed decisions [22]. In this context, false negatives may lead to maintenance 
being conducted as it is predicted to be a failure, but it should have passed, leading to unnecessary 
waste of time and money. Such false alarms would impact the availability of the land platform. 
 

CONCLUSION AND EVALUATION 
 
 Machine learning models used in this paper were able to give a high accuracy and 
potentially raise the availability of the land platform. Random Forest had perfect accuracy, 
followed by Decision Tree, Gradient Boosting and k-Nearest Neighbours. These models had a 
relatively ideal accuracy as expected in the beginning and can benefit the military operations by 
optimising the resources. 

Applications and Future Research 
These models can be potentially used to predict failures for the platform and send them for 

repairs just in time, hence reducing costs and optimising resources. For future research, more data 
could have been used in the analysis phase of this research so that there could have been more 
generalisations and potentially, more trends can be observed. In addition, taking regular pressure 
readings in the platform would help on time classification of failures for the platform. Lastly, there 
                                                
5 A true positive and true negative suggests that the model correctly predicted that it is a pass and a failure 
respectively while a false positive and false negative suggests that the model wrongly predicted that it is a pass and a 
failure respectively. [21] 



could be more sensors in the vehicle to get more parameters which were not explored in this paper 
to be checked so that insights on other parameters can lead to more insights on other factors 
contributing to brake failure. 
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APPENDIX 
Formulae: 
 

1. Mileage Per Engine Hour = Mileage ÷ Engine Hours 
2. Total Residual Pressure = RHS Residual Pressure + LHS Residual Pressure 
3. Pressure and Age = Total Residual Pressure + Age Till Date 
4. Pressure Age Mileage = Total Residual Pressure + Age Till Date + Mileage 
5. Pressure Age Mileage Engine = Total Residual Pressure + Age Till Date + Mileage + 

Engine Hours 
6. Pressure Age Mileage Hour = Total Residual Pressure + Age Till Date + Mileage Per 

Engine Hour. 
 
Figures: 

 
Fig A1.3: The Percentages of Passes and Failures by variant 

 

   
Fig A1.4: The Total Count of Failure by Variant      Fig A1.5: Count of Failures vs Phase  

 



 
Fig A1.6: Count of failure vs Age till Failure 

 

 
Fig A1.7: Variant vs Mean Age till failure 

 

 
Fig A1.8: Variant vs Mean of Engine hours 

 
Fig A1.9: Variant vs Mean of Mileage 

 



 
Fig A2.2: Decision trees feature engineering 

 

 
Fig A2.3: Gradient Boosting feature engineering 

 

 
Fig A2.4: k-nearest neighbours feature engineering 

 

 
Fig A2.5: Random Forest feature engineering 

 


